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Abstract.  Agent-based simulation methods are a relatively new way to address complex 
systems. Usually the idea is that the agents used are rather simple, and the complexity and 
adaptivity of such a system are modelled by the interaction between these agents. However, 
another way to exploit agent-based simulation methods is by use of agents that themselves also 
have certain forms of learning or adaptation. In order to simulate adaptive agents with abiliti es 
matching those of their real-world biological or societal counterparts, a natural approach is to 
incorporate certain adaptation mechanisms such as classical conditioning into agent models. 
Existing models for adaptation mechanisms are usually based on quantitative, numerical 
methods, and more in particular, differential equations. Since agent-based simulation is usually 
based on qualitative, logical languages, these quantitative models are often not directly 
appropriate as an input in the context of agent-based simulation. To deal with this problem, this 
paper puts forward an integrative approach to simulate and analyse the dynamics of a 
conditioning process of an adaptive agent, integrating quantitative, numerical and qualitative, 
logical aspects within one expressive temporal specification language. To obtain a simulation 
model, an executable sublanguage of this language is used to specify the agent’s adaptation 
mechanism in detail . For analysis and validation, in the proposed approach both properties 
characterising the externally observable adaptive behaviour and properties characterising the 
dynamics of internal intermediate states have been identified, formally specified and 
automaticall y checked on the generated simulation traces. As part of the latter, an approach to 
(formally) specify and check representational relations for intermediate, internal agent states is 
put forward. This enables verification of whether the representational content of an intermediate 
state a modeller has in mind indeed is in accordance with the agent model’s internal dynamics. 
For a biological agent with known neural mechanisms, such as Aplysia, the modelli ng approach 
incorporates high-level modelli ng of neural states occurring as intermediate states and relates 
them to their representational content specification. This provides the possibilit y to validate not 
only the resulting observable behaviour of a simulation model against the observable behaviour 
of the agent in the real world, but also the intermediate states of the agent in the model against 
the intermediate states of the agent in the world. 
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1  Introduction 

Agent-based modelli ng techniques are often used to model and simulate (natural or artificial) 

agent systems that have to deal with dynamic and uncertain environments. Usually agent-based 

simulation methods use agents that are rather simple; the complexity and adaptivity of such a 

system are modelled by the interaction between these agents. However, another way to exploit 

agent-based simulation methods is by use of agents that themselves also have certain forms of 

learning or adaptation. Therefore, an important challenge for the area of agent-based modelli ng 

is the notion of adaptive agent. An example of a basic mechanism for adaptation that can be 

found in many organisms is classical conditioning [19]. In order to create agent-based 

simulations with adaptive abiliti es matching those of their biological counterparts, a natural 

approach is to integrate such adaptation mechanisms into agent-based simulation models, e.g., 

[1]. 

In the literature adaptation mechanisms such as classical conditioning are usually described 

and analysed informally. If f ormalisation is used, this is often based on mathematical models 

using differential equations, e.g., Dynamical Systems Theory (DST) [20]. In contrast, agent-

based simulation models traditionally make use of qualitative, logical languages, such as Golog 

[21], MetatheM [7], or 3APL [6]. Most of these languages are appropriate for expressing 

qualitative relations, but less suitable to work with more complex numerical structures as, for 

example, in differential equations. Therefore, integrating such mathematical models within the 

design of agent-based simulation models is diff icult. To achieve this integration, it is necessary 

to bridge the gap between the quantitative nature of existing adaptation models and the type of 

languages typically used in agent-based simulation. 

In the area of simulation, a formalised model is used to compute the simulation steps. 

Languages and software environments are available to support this modelli ng process. 

Validation of a model is usually not formally supported; it is considerded a different issue. 

Often validation is done informally, by hand (or eye), based on comparison of a simulation trace 

with an empirical trace. In addition, sometimes specific (e.g., statistical) techniques are used to 

support certain aspects of validation. Usually in the domain that is modelled, global properties 

that should hold for the behaviour of a simulation model can be identified. As the languages 

used to specify a simulation model are directed to local properties (the steps between successive 

states), such global properties cannot be formalised in these languages. To obtain more support, 

also for validation of a simulation model, it is needed to integrate the modelli ng of such global 

properties in a formal manner as well , so that their specification and automated checking on 

simulation traces also can be supported by the modelling environment.  
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In accordance with the findings mentioned above, this paper introduces an approach for 

simulation and analysis of adaptive agent behaviour and underlying mechanisms that is 

integrative in two ways: 
 

(1) It combines in one modelli ng framework both qualitative, logical and quantitative, 

numerical aspects   

(2) It enables modelli ng dynamics both at a local level (internal mechanisms of the agent) and 

at a global level (externally observable agent behaviour, and representation relationships 

between internal and external states)  
 

Modelli ng dynamics at a local level concerns expressing temporal relationships between pairs 

of successive states, such as described by direct causal relations, or, for example, by the basic 

steps within an adaptation mechanism. A difference or differential equation is an example of a 

local level specification of dynamics. From a local perspective, the dynamics of the actual 

underlying (e.g., neural) mechanisms that play a role in the real world can be investigated. Local 

level specifications are the basis for the computation steps for a simulation model.  

From the global perspective, more complex relationships over time can be used to model 

dynamics for adaptive agents. For example, the dynamics of observed adaptive agent behaviour 

can be analysed, i.e., how during a history of (learning) experiences, the behaviour is changing. 

For example, the performance of actions depending on a stimulus in the present and a certain 

training history (series of training stimuli in the past) can be modelled. This can take the form of 

a temporal relationship (an input-output correlation) involving a longer time duration and 

several agent input and output states over time.  

Besides input-output correlations describing adaptive agent behaviour as just discussed, also 

from a global perspective representation relations for intermediate, internal agent states can be 

modelled. During modelli ng, for an internal or intermediate state of the agent as introduced in 

the model, often a modeller has in mind a certain representational content, i.e., how it relates to 

other concepts outside the agent. To take a simple example, it may be expected that the internal 

belief that a horse is nearby correlates to the actual presence of this horse. Such expected 

representation relations may or may not be inspired by knowledge of how the agent’s adaptation 

mechanism is realised in Nature. The approach put forward includes ways to (formally) specify 

such representation relations and verify them against simulation traces, showing whether this 

representational content is in accordance with the agent model’s internal dynamics. In this way 

the modelli ng approach can also address the issue of realism of internal or intermediate states in 

a simulated agent. For example, for an adaptive biological agent with known neural 

mechanisms, such as Aplysia, the modelli ng approach incorporates the modelli ng of neural 

states occurring as intermediate states and relating them to other states in the world according to 

their representational relation specif ication. This provides the possibility t o validate not only the 
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resulting observable behaviour of an agent simulation model against the observable behaviour 

of the agent in the real world, but also the internal, intermediate states of the agent in the model 

against the internal, intermediate states of the agent in the world. Thus it can be verified to what 

extent the model satisfies internal realism in addition to external realism.  

As both the adaptation mechanism and the externally observable behaviour are modelled in 

the form of temporal relationships, within the modelli ng approach it is also possible to logically 

relate the dynamics of internal agent models involving a (neural) adaptation mechanisms to the 

model for the dynamics of the externally observable adaptive behaviour. Such interlevel 

relations often take the hierarchical form of an AND-tree (or a number of them), with the most 

global property at the top (root) and the most local at the leaves. Such a hierarchical structure 

can be useful in the analysis of, in case, why a global property fails on a certain simulation 

trace. By going down in the tree and at each level checking the properties under the faili ng 

node, finally the leaf or leaves that fail (s) can be found, thus pinpointing the (local) cause of the 

failure. This can be useful in debugging a model, but also in the analysis of the circumstances 

under which a model will function well and under which not, and the reasons why. 

If the actual underlying neural mechanisms are included in the analysis of adaptive 

behaviour, the sea hare Aplysia is an appropriate species to study, since its neural mechanisms 

have been well -investigated; cf. [10]. In this paper it will be shown how the proposed modelli ng 

approach for adaptive agents can be used to simulate and analyse both Aplysia’s adaptive 

behaviour and the underlying neural mechanisms. 

An overview of the paper is as follows. In Section 2 the high-level modelli ng approach is 

briefly introduced. Section 3 introduces the case study and the state properties for this case 

study. In Section 4 the executable local dynamic properties describing basic mechanisms for the 

case study are presented; simulations on the basis of these local dynamic properties are 

discussed in Section 5. In Section 6 the interlevel relations between dynamic properties of the 

externally observable behaviour and the local properties describing the internal mechanisms are 

discussed. In Section 7 different approaches to representational content are explored and 

formalised. Section 8 discusses how all these dynamic properties have been checked against the 

simulation traces. Section 9 is a discussion.  

2  Modelling Approach 

To formally specify dynamic properties that express criteria for representational content from a 

temporal perspective an expressive language is needed. Dynamics will be described in the next 

section as evolution of states over time. The notion of state as used here is characterised on the 

basis of an ontology defining a set of state properties that do or do not hold at a certain point in 
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time. Examples of state properties are ‘ the agent is hungry’ , ‘ the agent observes rain’ , ‘ the agent 

has internal state s’ , or ‘ the environmental temperature is 7° C’ . Real value assignments to 

variables are also considered as possible state property descriptions. For example, in a 

quantitative modelli ng approach (such as [20]), based on variables x1, x2, x3, x4, that are related 

by differential equations over time, value assignments such as  
 

x1   ← 0.06 

x2  ← 1.84 

x3   ← 3.36 

x4   ← - 0.27  

 

are considered state descriptions. State properties are described by ontologies that specify the 

concepts used. 

Based on such state properties, dynamic properties can be formulated that relate a state at one 

point in time to one or more states at other points in time. A simple example is the following 

dynamic property specification:  
 

 ‘at any point in time t1 if the agent observes rain at t1, then there exists a point in time t2 after t1 such that at 

t2 the agent has internal state property s’ 
 

Here, for example, s can be viewed as a sensory representation of the rain. To express such 

dynamic properties, and other, more sophisticated ones, the temporal trace language TTL is used 

[14]. This language can be classified as a reified predicate-logic based temporal language; see 

[8], [9]. 

Within this language, explicit references can be made to time points and traces. Here a fixed 

time frame T is assumed which is linearly ordered. Depending on the application, it may be 

continuous (e.g., the real numbers), or discrete (e.g., the set of integers or natural numbers or a 

finite initial segment of the natural numbers), or any other form, as long as it has a linear 

ordering. Moreover, a trace or trajectory over an ontology Ont is a time-indexed sequence of 

states over Ont. The sorted predicate logic temporal trace language TTL is built on atoms 

referring to, e.g., traces, time and state properties. State properties are denoted by terms in the 

language TTL. For example,  

 

in the internal state of agent A in trace γ at time t property s holds  

 

is formalised by state(γ, t, internal(A)) |== s. Here |== is a predicate symbol in the language, usually 

used in infix notation, which is comparable to the Holds-predicate in situation calculus. Dynamic 

properties are expressed by temporal statements built using the usual logical connectives and 

quantification (for example, over traces, time and state properties).  
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To be able to perform some simulation experiments, a simpler temporal language has been 

used to specify executable models in a declarative manner. This language (the leads to language 

[4]) enables to model direct temporal dependencies between two state properties in successive 

states. This executable format is defined as follows. Let α and β be state properties of the form 

‘conjunction of atoms or negations of atoms’ , and e, f, g, h non-negative real numbers. Then the 

notation α →→e, f, g, h β, means: 

If        state property α holds for a certain time interval with duration g 

then   after some delay (between e and f) state property β will hold for a certain time interval of length h. 

For a precise definition of the leads to format in terms of the language TTL, see [14]. A 

specification of dynamic properties in leads to format has as advantages that it is executable and 

that it can often easily be depicted graphically. The leads to format has shown its value 

especially when temporal or causal relations in the (continuous) physical world are modelled 

and simulated in an abstract, non-discrete manner; for example, the intracellular chemistry of E. 

coli  [12]. 

3  The Aplysia Case Study 

To ill ustrate the proposed approach for modelli ng and simulation of adaptive agents, it is 

applied in a case study. As the topic of the case study, the sea hare Aplysia was chosen. The 

motivation for this choice is two-fold. First, Aplysia is a clear example of an adaptive agent. 

Second, the internal neural mechanisms of Aplysia are relatively simple, and therefore well 

understood. This enables the modeller to (formally) describe Aplysia‘s behaviour both from an 

internal perspective (i.e., at a local level, considering neural mechanisms of the agent) and from 

an external perspective (i.e., at a global level, considering externally observable agent 

behaviour). As a result, both interlevel relations (see Section 6) and representation relations 

(see Section 7) can be established between both types of descriptions. First, in Section 3.1, 

Aplysia‘s behaviour will be described from an external perspective. In Section 3.2, Aplysia‘s 

behaviour will be described from an internal perspective. 

3.1  External Perspective 

Aplysia is a sea hare that is often used to do experiments. It is able to learn on the basis of 

classical conditioning. In this section, a simpli fied description is given of this learning 

behaviour (viewed from an external perspective), based on [10], pp. 155-156.  
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Behaviour before learning phase 

Initiall y the following behaviour is shown: 

- a tail shock leads to a response (contraction) 

- a light touch on its siphon is insuff icient to trigger such a response  
 

Learning phase 

Now suppose the following experimental protocol is undertaken. In each trial the subject is 

touched lightly on its siphon and then, shocked on its tail (as a consequence it responds).  
 

Behaviour after a learning phase 

It turns out that after a number of trials (three in the example) the behaviour has changed:  

- the animal also responds (contracts) on a siphon touch. 
 

Note that, to characterise behaviour, there is a difference between the learned behaviour (which 

is simply an adapted stimulus-response behaviour) and the learning behaviour, which is a form 

of adaptive behaviour, no stimulus-response behaviour. To specify such behaviours the 

following sensor and effector states are used: tail_shock, siphon_touch, contraction. In terms of these 

state properties the following global dynamic properties can be specified in leads to format: 
 

GP1  (Contraction Upon Tail Shock)   

At any point in time t, 

i f  a tail shock occurs then   it  will contract  

Formally: 

tail_shock  →→e,f,g,h  contraction   

 

GP2  (Contraction Upon Siphon Touch)   

At any point in time t, 

i f  a siphon touch occurs then   it will contract  

Formally: 

siphon_touch  →→e,f,g,h  contraction   
 

The latter property specifies the behaviour that is the result of the learning process. However, 

the behaviour shown by the learning process itself is not expressed here, and as this proces 

involves more complex temporal relationships, is even not expressable able in leads to format. 

However, it is expressable in TTL format: 
 

GP3   (Learning to Contract Upon Siphon Touch)  

At any point in time t, 

if a siphon touch occurs 

  and at three different earlier time points t1, t2, t3, 

a siphon touch occurred, directly followed by a tail shock  

then it will contract 
 



        

 8 

Formally: 

∀γ ∀t state(γ, t) |== siphon_touch  & 

∃t1, t2, t3, u1, u2, u3   t1 < u1 < t2 < u2 < t3 < u3 < t &  

state(γ, t1) |== siphon_touch  & state(γ, u1) |== tail_shock  & 

state(γ, t2) |== siphon_touch  & state(γ, u2) |== tail_shock  & 

state(γ, t3) |== siphon_touch  & state(γ, u3) |== tail_shock   

⇒  ∃t' ≥ t  state(γ, t') |== contraction   
 

As can be seen, the temporal complexity of the learning behaviour specification is much higher 

than that of the learned behaviour. 

3.2  Internal Perspective 

This section describes Aplysia‘s behaviour from an internal perspective. The internal neural 

mechanism for Aplysia’s conditioning can be depicted as in Figure 1; cf. [10]. 

 

 

 

 

 

 

 

Fig. 1. Neural mechanisms 

A tail shock activates a sensory neuron SN1. Activation of this neuron SN1 activates the 

motoneuron MN; activation of MN makes the sea hare move. A siphon touch activates the 

sensory neuron SN2. Activation of this sensory neuron SN2 normally does not have suff icient 

impact on MN to activate MN. After learning, activation of SN2 has suff icient impact to 

activate MN. In addition, activation of SN1 also leads to activation of the intermediary neuron 

IN. If both SN2 and IN are activated simultaneously, this changes the synapse between SN2 and 

MN: it causes this synapse to produce more neurotransmitter if SN2 is activated. After a number 

of times this leads to the situati on that also activation of SN2 yields activation of MN. 

To model the example the following internal state properties are used: 
 

SN1   sensory neuron 1 is activated 

SN2   sensory neuron 2 is activated 

IN    intermediary neuron IN is activated 

SN1 

siphon 
touch 

tail  
shock 

contraction 

IN MN 

  

SN2 

  

  

  
  

c 
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MN  motoneuron MN is activated 

S(r)  the synapse between SN2 and MN is able to produce an amount r of  

neurotransmitter 
 

The dynamics of these internal state properties involve temporal leads to relationships, which 

are analysed in more detail in the next section. 

4  Local Dynamic Properties 

To model the internal dynamics of the example, the following local properties (in leads to 

format) are considered. They describe the basic steps or mechanisms of the process.  
 

LP1   (SN1 Activation) 

At any point in time, 

i f  a tail shock occurs then  SN1 will  be activated 

Formally: 

tail_shock  →→e,f,g,h  SN1  

 

LP2   (SN2 Activation)  

At any point in time, 

i f  a siphon touch occurs then  SN2 will be activated 

Formally: 

siphon_touch→→e,f,g,h  SN2  

 

LP3   (IN and MN Activation by SN1) 

At any point in time, 

i f  activation of SN1occurs then  IN and MN will be activated 

Formally: 

SN1 →→e,f,g,h IN ∧ MN  

 

LP4  (Synaps Adaptation) 

At any point in time, 

i f  activation of SN2occurs 

   and activation of IN occurs 

   and the synaps has strenght r with r < 4 

then the synaps will have strenght r+1 

Formally: 

S(r) ∧ SN2 ∧ IN ∧ r < 4 →→e,f,g,h  S(r+1)  
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LP5  (MN Activation by SN2) 

At any point in time, 

i f  activation of SN2occurs 

   and the synaps has strenght 4 

then MN will  be activated 

Formally: 

S(4) ∧ SN2 →→e,f,g,h  MN  

 

LP6   (Contraction by MN) 

At any point in time, 

i f  activation of  MN occurs  then  it will contract 

Formally: 

MN →→e,f,g,h contraction 

 

LP7 (Synaps State Persistence) 

At any point in time, 

i f  the synaps has strenght r with r < 4 

   and the synaps has not strenght r+1 

then the synaps will have strenght r 

Formally: 

S(r) ∧ not S(r+1) ∧ r < 4 →→e,f,g,h S(r) 

 

LP8 (Synaps State Persistence) 

At any point in time, 

i f  the synaps has strenght 4 then  the synaps will have strenght 4 

Formally: 

S(4)  →→e,f,g,h  S(4) 

 

LP9 (Initialisation) 

At the start, the synaps has strenght 1 

Formally: 

start →→e,f,g,h S(1) 
 

In Figure 2 an overview of these properties is given in a graphical form. Here, the circles denote 

state properties and the arrows denote dynamic properties.  
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Fig. 2. Overview of the basic dynamics of the simulation model  

 
Note that this model is based on a number of simpli fications. For example, it is assumed that 

after exactly 4 steps the strength of the synapse between SN2 and MN is maximal, and that 

there is no extinction. However, since our modelli ng approach supports the use of quantitative 

concepts (such as real numbers and mathematical operations), it is easy to incorporate such 

features in the model. A rather straightforward way to do this is by replacing LP4 through LP8 

by the following local properties. Here, β indicates the learning rate, K indicates the maximal 

strength of the synapse between SN2 and MN (e.g., 4), ε indicates the extinction rate, and t 

indicates the minimum threshold of S needed to have SN2 influence MN. For all values, real 

numbers can be used. 

 
 

LP4  (Synaps Adaptation) 

At any point in time, 

i f  activation of SN2occurs 

   and activation of IN occurs 

   and the synaps has strenght r  

then the synaps will have strenght β*(K-r)+(r*ε) 

Formally: 

S(r) ∧ SN2 ∧ IN →→e,f,g,h  S(β*(K-r)+(r*ε))  
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LP5  (MN Activation by SN2)    

At any point in time, 

i f   activation of SN2occurs 

   and the synaps has strenght r > t 

then  MN will  be activated 

Formally: 

S(r) ∧ SN2 ∧ r > t →→e,f,g,h  MN  

 

LP7 (Synaps State Decay) 

At any point in time, 

i f   the synaps has strenght r 

   and    SN2 is not activated 

then  the synaps will have strenght r*ε 

Formally: 

S(r) ∧ not SN2 →→e,f,g,h S(r*ε) 

 

LP8 (Synaps State Decay) 

At any point in time, 

i f   the synaps has strenght r 

   and    IN is not activated 

then  the synaps will have strenght r*ε 

Formally: 

S(r) ∧ not IN →→e,f,g,h S(r*ε) 
 

 

 

 

Another extension to the model would be to introduce real-valued arguments for the state 

properties SN1, SN2, IN and MN as well , indicating the strength of thei r activation. This would 

allow the model to distinguish between, for example, tail shocks of different strengths. 

Although these extensions are relatively easy to perform, for reasons of presentation in the 

remainder of this paper the simpli fied model is used. 

5  Simulation 

As mentioned in the Introduction, local level specifications are the basis for the computation 

steps for a simulation model. Thus, special software environments can be created to enable the 

simulation of local level specifications, as long as these are in an executable format. For the 

executable language leads to, such a software environment has indeed been built , see [4] for 

details. Based on an input consisting of dynamic properties in leads to format, this software 
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environment generates simulation traces.  An example of such a trace can be seen in Figure 3. 

Here, time is on the horizontal axis, the state properties are on the vertical axis. A dark box on 

top of the line indicates that the property is true during that time period, and a lighter box below 

the line indicates that the property is false. This trace is based on all l ocal properties identified 

in Section 4. In property LP1 and LP2 the values (0,0,1,3) have been chosen for the timing 

parameters e, f, g, and h. In all other properties, the values (0,0,1,1) have been chosen. As can be 

seen in Figure 3, at the beginning of the trace the organism has not performed any conditioning. 

The initial siphon touch it receives does lead to the activation of sensory neuron SN2, but the 

synapse between SN2 and motoneuron MN does not produce much neurotransmitter yet 

(indicated by internal state property S(1)). Thus, the activation of SN2 does not yield an 

activation of MN, and consequently no external action follows. In contrast, it is shown that a 

shock of the organism' s tail does initiall y lead to the external action of contraction. This can be 

seen in Figure 3 between time point 10 (when the tail shock occurs) and time point 13 (when the 

animal contracts). After that, the actual learning phase starts. This phase consists of a sequence 

of three trials where a siphon touch is immediately followed by a tail shock. As a result, the 

sensory neuron SN2 is activated at the same time as the intermediary neuron IN, which causes 

the synapse to change so that it can produce an increased amount of neurotransmitter each time 

SN2 is activated. Such a change in the synapse is indicated by a transition from one internal state 

property to another (first from S(1) to S(2), then to S(3), and finally to S(4)). As soon as internal 

state property S(4) holds (see time point 44), the conditioning process has been performed 

successfully. From that moment, Aplysia' s behaviour has changed: it also contracts on a siphon 

touch. 

 

 
 

 

Fig. 3. Example simulation trace 
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For the purposes of this example, the amount of trials is kept low (three). However, similar 

experiments have been performed with a case of 1000 learning steps. Since the abstract way of 

modelli ng used for the simulation is not computationally expensive, also these simulations took 

no more than 90 seconds. In addition, our simulation approach has possibiliti es to incorporate 

real numbers in state properties, and to perform complex mathematical operations with these 

numbers. This makes it more expressive than more traditional forms of temporal logic. 

6  Interlevel Relations 

In the previous sections, both the internal (neural) adaptation mechanism and the externally 

observable behaviour of Aplysia were modelled in the form of temporal relationships. Within 

the presented modelli ng approach, this implies that it is also possible to logically relate the 

dynamics of both models. This section outlines these interlevel connections between dynamic 

properties at different levels. It will be shown how the description at the level of the 

neurological mechanisms (the local dynamic properties LP1 through LP9) can be logically 

related to the description at the level of the overall behaviour (the global property GP3). This 

way, a formalisation is obtained of the (interlevel) reduction relation between the two levels. To 

be precise, this relation is described by the following implication: 
 

(1) LP1  through LP9 & CWA    ⇒  GP3 
 

This equation states that the local properties together imply the global property GP3 (which 

expresses that experiencing the combination of a tail shock and a siphon touch three times 

results in a response to the siphon touch alone). Moreover, one additional property is 

introduced, i.e., CWA. This second-order property that is commonly known as the Closed 

World Assumption expresses that at any point in time a state property that is not implied by a 

specification to be true is taken to be false. Let Th be the set of all l ocal properties LP1 through 

LP9, then the formalisation is:  
 

Closed World Assumption (CWA)  

∀P ∈ At(ONT) ∀γ ∀t:Th |-/- state(γ, t) |== P ⇒ state(γ, t) |== not P 
 

The Closed World Assumption is needed to ensure that the intermediate results as indicated by 

the S(r) state properties can only hold as a result of the local properties LP1 through LP9, and 

not because of some other (mysterious) cause.  

Essential milestones in the proof of relationship (1) are that subsequently S(1), S(2), S(3), and 

S(4) will hold. These milestones can be seen as the result of a learning process. Therefore, an 

additional lemma is introduced. This lemma describes the effect of a learning step on the 

synapse, showing the increase of parameter r in state property S(r), given that the siphon is 
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touched, directly followed by a tail shock. In this case study the effect we are interested in is 

already reached at r=4. The lemma can easily be adapted for more lengthy learning processes.  

Formally, the lemma is specif ied as: 
 

M(g, h, r) Learning step 

∀γ  ∀t1, t2, u1 

t1 < u1 < t1 +g &  t1 < t2 < t1 +g &  r < 4  &  

∀t  [t1 
���������	��


 ⇒ state(γ, t) |== siphon_touch ]  & 

∀t  [u1 
�������
�	��


 ⇒ state(γ, t) |== tail_shock ] & 

∀t  [t2 
������������


 ⇒ state(γ, t) |== S(r) ] 

⇒   ∃t3 [ t3 ≥ t2 & ∀t [t3 
������������
 ⇒ state(γ, t) |== S(r+1) ] ] 

 

Property M(g,h,r) can be proved for g=1, h=1, and r varying from 1 to 4 from LP1, LP2, LP3, 

LP4, LP7, and CWA, taking (0, 0, 1, 3) as timing parameters in LP1 and LP2, and (0, 0, 1, 1) for 

the timing parameters of the other local properties. 
 

(2) LP1 & LP2 & LP3 & LP4 & LP7 & CWA    ⇒  M(1, 1, r) 
 

The introduction of property M(1,1,r) allows one to reduce relationship (1) to the following, 

simpler implication: 
 

(3) LP2 & LP5 & LP6 & LP7 & LP8 & CWA & M(1,1,r)   ⇒  GP3 
 

Figure 4 provides a visualisation of relationship (1) through (3). The semantics of this tree is as 

follows: if a certain trace satisfies all l ower-level properties connected to a certain higher-level 

property, then this trace also satisfies the higher-level property. 

 

 

 

Fig. 4. Interlevel relationships for property GP3 

 
The full proof of these relationships is a diff icult issue, and is left out of this paper. Instead only 

a sketch of the proof is given, in which some initiali sation issues are ignored. First a proof 

sketch of implication (2) is provided. For this proof, the crucial points are that the siphon touch 

 GP3 

LP5 LP8 LP7 LP6 CWA LP2 M(1,1,r) LP9 

LP1 LP7 LP4 LP2 CWA LP3 
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and the tail shock are coordinated in time such that SN2 (by application of LP2) exists long 

enough for it to co-exist with IN. Given LP7 and CWA it becomes clear that S(r) persists long 

enough for LP4 to have effect. The following sketch is ill ustrated by Figure 5. First, assume 

that: 

t1 < u1 < t1 +g &  t1 < t2 < t1 +g &  r < 4  &  

∀t  [t1 
������� � � �

 ⇒ state(γ, t) |== siphon_touch ]  & 

∀t  [u1 
������� � � �

 ⇒ state(γ, t) |== tail_shock ] & 

∀t  [t2 
������� � � �

 ⇒ state(γ, t) |== S(r) ] 
 

Then CWA can be applied to derive that: 

∀t  [t 
�����

⇒ state(γ, t) |== not S(r+1) ] 
 

In addition LP1 can be applied to derive: 

∀t  [u1 + 1 
������� � � �

⇒ state(γ, t) |== SN1 ] 
 

Using this information, and LP3, the following is derived: 

∀t  [u1 + 2 
������� � ��� ⇒ state(γ, t) |== IN ] 

 

Similarly, LP2 can be applied on the time duration of the siphon touch to derive:  

∀t [t1 + 1 
������� � � � ⇒ state(γ, t) |== SN2 ] 

 

In order to apply LP4 on the intersection interval of the periods during which both SN2 and IN 

hold (i.e., [u1 + 2, t1 + 4>, which has a duration > 1), it must be ascertained that S(r) also holds 

long enough (at least 1) in that interval. Since t1 < u1 < t1 +g & t1 < t2 < t1 +g, the absolute 

difference |t2 – u1| < 1.  

For the other case LP7 needs to applicable to derive a persistence of S(r), to the extent that it 

overlaps long enough SN2 and IN. Given that LP4 cannot be applied in the time period [t2, t2 + 

1>, and the fact that there is no local property that derives S(r+1) during that same interval, 

CWA is applicable. Even stronger, CWA is applicable until LP4 is applicable, deriving:  

∀t  [t2 
������� � � � ⇒ state(γ, t) |== S(r) ] 

 

Note that given that t1 < u1 < t1 +g (with g=1), the interval [t2, u1 + 3> overlaps with [u1 + 2, t1 + 4> 

for the interval [u1 + 2, u1 + 3>. Therefore, LP4 can be applied on this interval to derive the result 

of M(1,1,r), thus proving relationship (2): 

∀t  [u1 + 3 
������� � � �

⇒ state(γ, t) |== S(r+1) ] 
 

As can be seen from the proof sketch, the timing issues make proofs complex. In Figure 5, the 

timing information is left out. The tree only gives insight into which local properties (or CWA) 

are applied on which state properties. 
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Fig. 5. Sketch of interlevel relationship (2) 

 
 
The proof sketch for interlevel relationship (3) (as ill ustrated in Figure 6, again with all 

timing elements left out) takes all the siphon touches, tail shocks as given in the precondition of 

the implication in GP3 as hypotheses and shows how to derive a contraction of Aplysia. The 

initial assumption LP9 provides that S(1) holds in the beginning. By the CWA it is possible to 

apply LP7 ensuring that S(1) persists until the first sequence of siphon touch and tail shock have 

taken place and M(1,1,1) can be applied. The pattern of applying CWA and LP7 to ensure 

persistence is repeated for every new occurrence of the sequence of siphon touch and tail shock, 

until S(4) holds. Because of LP8, S(4) persists until a new siphon touch occurs, and LP2 has 

been applied leading to SN2. The persisting of S(4) and the existence of SN2 make LP5 

applicable, leading to MN. Finally, the application of LP6 on MN leads to a contraction, thus 

completing the proof of (3). Combining the proofs of relationship (2) and (3) eventually results 

in the proof of (1). 
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Fig. 6. Sketch of interlevel relationship (1) 

 
Establishing interlevel relations such as represented in Figure 4 can be useful in the analysis 

of simulation traces. To ill ustrate this, assume that, in a given simulation trace, a certain global 

property (e.g., GP3) does not hold. Then by a refutation process it can be concluded that one of 

the lower level properties does not hold either (i.e., CWA, LP2, LP5, LP6, LP7, LP8, LP9 or 

M(1,1,r) does not hold). If , after checking these properties, it turns out that M(1,1,r) does not 

hold, then either CWA, LP1, LP2, LP3, LP4 or LP7 does not hold. Thus, by this example 

refutation analysis eventually the cause of the unsatisfactory behaviour can be reduced to the 

failure of a local property.  

7   Representational Relations 

In the literature on Philosophy of Mind different types of approaches to representational content 

of an internal state property have been put forward, for example the causal/correlational, 

interactivist and relational specification approach; cf. [2]; [16], pp. 191-193, 200-202. These 

approaches to representational content have in common that the occurrence of the internal state 

property at a specific point in time is related to the occurrence of other state properties, at the 

same or at di fferent time points. The ‘other state properties’ can be of two types:  

LP9 

tail_shock S(1) siphon_touch 

M(1,1,1) 
S(2) not S(3) 

CWA 

not S(4) 
CWA 

LP7 
tail_shock S(2) siphon_touch 

M(1,1,2) 
S(3) 

LP7 
tail_shock S(3) siphon_touch 

M(1,1,3) 
S(4) 

S(4) 
LP8 

siphon_touch 

SN2 
LP2 

MN 
LP5 

contraction 
LP6 

not S(2) 
CWA 

S(1) 

LP7 



 19 

 
 

A. external world state properties, independent of the agent  

B. the agent’s sensor state and effector state properties, i.e. the agent’s interaction state 

properties (interactivist approach) 
 

Furthermore, the type of relationships can be (1) purely functional one-to-one 

correspondences, (e.g., the correlational approach), or (2) they can involve more complex 

relationships with a number of states at different points in time in the past or future, (e.g., the 

interactivist approach). So, four types of approaches to representational contents are 

distinguished, that can be indicated by codings such as A1, A2, and so on. Below, examples of 

such approaches are given. 

According to the causal/correlational approach (see [16], pp. 191-193), the representational 

content of a certain internal state is given by a one-to-one correlation to another (in principle 

external) state property: type A1. For example, the internal belief that a horse is nearby is 

correlated to the actual presence of this horse, which is an external state property. Such an 

external state property may exist backward as well as forward in time. Hence, for the current 

example, in order to define the representational content of an internal state property, one should 

try if this can be related to a world state property that either existed in the past or will exist in 

the future. For example, the representational content for internal state property SN1 can be 

defined as world state property tail_shock, by looking backward in time. However, for some of 

the other internal state properties the representational content cannot be defined adequately 

according to the causal/correlational approach. In these cases, reference should not be made to 

one single state in the past or in the future, but to a temporal sequence of inputs or output state 

properties, which is not considered to adequately fit in the correlational approach. This shows 

that especially in cases where the agent learns from a number of trials extending over time, a 

classical approach to representational content is insuff icient. Some authors even claim that it is a 

bad idea to aim for a notion of representation in such cases; e.g., [15], [23]. 

As an alternative, Bickhard’s Temporal-Interactivist approach [2,9] relates the occurrence of 

internal state properties to sets of past and future interaction traces: type B. In this paper the 

focus is on the B2 type, which is the more advanced case.  

The Relational Specifi cation approach to representational content is based on a specification 

of how the occurrence of an internal state property relates to properties of states distant in space 

and time; cf. [16], pp. 200-202. In this paper it is used in conjunction with the temporal-

interactivist approach. Thus, the representational content of a certain internal state can be 

defined by specifying a temporal relation of the internal state property to sensor and action 

states in the past and future. An overview for the content of all i nternal state properties of the 

case study, according to the temporal relational specification approach is given, in an informal 
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notation, in Table 1. Note that these relationships in fact are defined at a semantic level, not 

syntactli cally specified in a modelli ng language. Different interaction state properties, separated 

by commas, should be read as the temporal sequence of these states. 

Table 1. Temporal-Interactivist Representation Relation (sketch) 

 
Internal State 

Property 

Content  (backward) Content (forward) 

S(2) siphon_touch, 

tail_shock 

 

S(3) siphon_touch, 

tail_shock, 

siphon_touch, 

tail_shock 

 

S(4) siphon_touch, 

tail_shock, 

siphon_touch, 

tail_shock, 

siphon_touch, 

tail_shock 

any siphon_touch is followed by 

contraction 

 

Table 2 and 3 describe the same information as Table 1, but this time syntactically, expressed 

by TTL formulae. The following abstractions are used to describe training periods:   

 

training_up_to(γ,  t1, u1, 1) ≡    

u1 = t1 + 1  &  state(γ, t1) |== siphon_touch  & state(γ, u1) |== tail_shock   

 

training_up_to(γ,  t1, u2, 2) ≡ 

∃u1, t2 [u1 < t2 & u2 = t2 + 1]  

training_up_to(γ,  t1, u1, 1) &  state(γ, t2) |== siphon_touch  & state(γ, u2) |== tail_shock  

 

training_up_to(γ,  t1, u3, 3) ≡ 

∃u2, t3 [u2 <  t3 & u3 = t3 + 1]  

training_up_to(γ,  t1, u2, 2) &  state(γ, t3) |== siphon_touch  & state(γ, u3) |== tail_shock   
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Table 2. Temporal-Interactivist Representation Relation (specification, backward) 

 
I.s.p. Content (backward) 

S(2) ∀t1, u1     [ training_up_to(γ,  t1, u1, 1)  & ¬∃t0 [training_up_to(γ,  t0, u1, 2)] 

                  ⇒ ∃t2 > u1 [state(γ, t2) |== S(2)] ] 

∀t1, u2     [ training_up_to(γ,  t1, u2, 2)  & ¬∃t0 [training_up_to(γ,  t0, u2, 3)] 

                  ⇒ ∃t3 > u2 [state(γ, t3) |=/= S(2)] ] 

S(3) ∀t1, u2     [ training_up_to(γ,  t1, u2, 2)  & ¬∃t0 [training_up_to(γ,  t0, u2, 3)] 

                  ⇒ ∃t3 > u1 [state(γ, t3) |== S(3)] ] 

∀t1, u3     [ training_up_to(γ,  t1, u3, 3)  & ¬∃t0 [training_up_to(γ,  t0, u3, 4)] 

                  ⇒ ∃t4 > u3 [state(γ, t4) |=/= S(3)] ] 

S(4) ∀t1, u3     [ training_up_to(γ,  t1, u3, 3)  & ¬∃t0 [training_up_to(γ,  t0, u3, 4)] 

                  ⇒ ∃t4 > u3 [state(γ, t4) |== S(4)] ] 

 

 

Table 3. Temporal-Interactivist Representation relation (syntactic level, forward) 

 
I.s.p. Content (forward) 

S(4)  ∃ t' ≥ t [ state(γ, t') |== siphon_touch   & 

 ∀t' ≥ t [ state(γ, t') |== siphon_touch  ⇒  ∃t” ≥ t' state(γ, t”) |== contraction ] 

 

 

Consider, for example, the backward representational content of state property S(2). 

According to Table 2, the occurrence of exactly one learning trial (indicated by the fact that at 

u1, a training period up to 1 but not up to 2 has passed) eventually leads to a time point where 

S(2) holds. In addition, to make the content more precise, it is specified that the occurrence of 

exactly two learning trials eventually causes S(2) not to hold. 

As stated earlier, representational relations such as the ones specified here may correspond to 

certain expectations that the modeller has about the behaviour of the model. By (formally) 

specifying such expected representation relations and verifying them against simulation traces, 

it can be shown whether they are in accordance with the agent model’s internal dynamics. This 

provides the possibilit y to validate not only the resulting observable behaviour of an agent 

simulation model against the observable behaviour of the agent in the real world, but also the 

internal, intermediate states of the agent in the model against the internal, intermediate states of 

the agent in the world. Thus it can be verified to what extent the model satisfies internal realism 

in addition to external realism.  
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8  Checking Dynamic Properties 

In addition to the simulation software, a software environment has been developed that enables 

to check dynamic properties specified in TTL against simulation traces. This software 

environment takes a dynamic property and one or more (empirical or simulated) traces as input, 

and checks whether the dynamic property holds for the traces. Traces are represented by sets of 

Prolog facts of the form 
 

holds(state(m1, t(2)), a, true). 
 

where m1 is the trace name, t(2) time point 2, and a is a state formula in the ontology of the 

component' s input. It is indicated that state formula a is true in the component’s input state at 

time point t2. The program for temporal formula checking basically uses Prolog rules for the 

predicate sat that reduce the satisfaction of the temporal formula finally to the satisfaction of 

atomic state formulae at certain time points, which can be read from the trace representation. 

Examples of such reduction rules are: 
 

sat(and(F,G)) :- sat(F), sat(G). 

sat(not(and(F,G))) :- sat(or(not(F), not(G))). 

sat(or(F,G)) :- sat(F). 

sat(or(F,G)) :- sat(G). 

sat(not(or(F,G))) :- sat(and(not(F), not(G))). 
 

Using automatic checks of this kind, many of the properties presented in this paper have been 

checked against traces such as the one depicted in Figure 3. In particular, dynamic property GP3 

(expressing the learning behaviour) has been checked successfully against all generated traces. 

Furthermore, the representation relations denoted in Table 2 have been checked. The duration of 

these checks varied from 1 to 3 seconds, depending on the complexity of the formula. They all 

turned out to be successful, which validates (for the given traces at least) our choice for the 

representational content of the internal state properties. However, note that these checks are 

only an empirical validation, they are no exhaustive proof as, e.g., model checking is. Currently, 

the possibiliti es are explored to combine TTL with existing model checking techniques; cf. [5], 

[18], [22]. 
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9  Discussion 

This paper introduces an integrative modelli ng approach for simulation and analysis of adaptive 

agent behaviour and underlying mechanisms. The approach is integrative in two ways. First, it 

combines both qualitative, logical and quantitative, numerical aspects in one modelli ng 

framework. Second, it allows to model both dynamics at a local level (internal neural 

mechanisms of the agent; cf. [11]) and dynamics at a global level (externally observable agent 

behaviour, and representation relationships between internal and external states). 

The neural processes of the Aplysia case study (cf. [10]) have been formalised by identifying 

executable local dynamic properties for the basic dynamics of Aplysia’s neural conditioning 

mechanism. On the basis of these local properties simulations have been made. Moreover, it is 

shown how the descriptions at these two levels (i.e., the level of the neurological mechanisms 

and of the overall behaviour) can be logically related to each other, which can be considered as 

a formalisation of the (interlevel) reduction relations between the two levels. Such interlevel 

relations can be useful in the analysis of simulation traces, because they allow the modeller to 

reduce the failure of a global behavioural property to the failure of a local internal property of 

the model. This can be useful in debugging a model, but also in the analysis of the 

circumstances under which a model will function well and under which not, and the reasons 

why. 

Finally, the presented approach allows the modeller to (formally) specify and check 

representation relations, which relate internal or intermediate states of the agent simulation 

model to other states of the model, possibly at different time points. In this paper, it was 

explored how representation relations can be defined for adaptive agents, using approaches such 

as in [2], [13]; [16], pp. 200-202. The specifications of the representational content of the 

internal (neural) state properties for Aplysia have been validated by automatically checking 

them on the traces generated by the simulation model. As a result, not only the resulting 

observable behaviour of the agent simulation model has been validated against the observable 

behaviour of the agent in the real world, but also the internal states of the agent in the model 

have been validated against the internal states of the agent in the world. Thus it was verified to 

what extent the model satisfies internal realism in addition to external realism. 

Concerning related work, in [3] another formal model is described of the dynamics of 

conditioning processes, using a similar modelli ng approach. However, that paper focuses on 

human conditioning, based on existing literature such as [17]. Instead, the current paper focuses 

on the specific case of Aplysia, of which the neural mechanisms are much simpler and therefore 

better understood. As a consequence, the model presented in the current paper is at a neural 
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level, whereas the model of [3] is at a functional level. Another difference is that their model 

concentrates more on the temporal aspects of the conditioning. 
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